To Name :
To Email :
From Name :
From Email :
Comments :

Surgical Technique

Hysteroscopy: Managing and minimizing operative complications

Techniques to assess the site, spot imminent perforation, and avoid or correct the 5 most common types of problems.

February 2005 · Vol. 17, No. 2
This week's quiz:
More »


  • Perform endometrial sampling for abnormal uterine bleeding before scheduling operative hysteroscopy.
  • Most uterine perforations do not require treatment— even those involving large dilators—although further assessment may be necessary to rule out bowel injury.
  • Most complications of electrosurgery involve activating an electrode at the time of perforation, or diverting current to the outer sheath.
  • Scrupulously monitor fluid intake and output to prevent hyponatremic complications.


A 44-year-old woman undergoing resection of a submucous myoma from the left cornual region has persistent bleeding at the resection site. The surgeon continues coagulation at the bleeding site, using a rollerball electrode in an attempt to achieve hemostasis, but perforates the uterus. Immediate laparoscopy to identify collateral injury reveals some thermal damage on the posterior leaf of the broad ligament, but no bowel injury. After 24 hours of observation, she is afebrile without leukocytosis. She is discharged with explicit instructions to return if she has symptoms suggesting bowel injury. She returns in 72 hours, with abdominal pain and low-grade fever. CT reveals extravasation of contrast from the left ureter in the pelvis. Immediate laparotomy finds perforation of the left ureter secondary to a thermal injury. She undergoes ureteroneocystotomy and recovers.

This case illustrates one of the most common complications of operative hysteroscopy: uterine perforation with collateral injury. Both could have been avoided if the Ob/Gyn had stopped the procedure when bleeding first occurred, removed the instruments, and allowed the uterus to contract spontaneously.

This is just one of the strategies that can reduce the risks of hysteroscopic surgery. Numerous reports confirm that operative hysteroscopy is safe and effective, but as more gynecologists perform an increasing number of procedures, we must be aware of potential complications and do our best to minimize risk to our patients.

Complications cannot be completely avoided, and may occur when a procedure is done correctly by experienced doctors. They are far more likely if techniques or equipment are used improperly. This article describes ways to minimize risk.

When the American Association of Gynecologic Laparoscopists (AAGL) surveyed its members in 1993, it found a complication rate of 2% for operative hysteroscopy.1 The rate of major complications—perforation, hemorrhage, fluid overload, and bowel or urinary tract injury—was less than 1%. A prospective multicenter trial2 of 13,600 procedures in the Netherlands found a higher complication rate for operative (0.95%) than for diagnostic hysteroscopy (0.13%).

Preoperative precautions

We can reduce the risk of complications if contraindications are not ignored, equipment is thoroughly inspected and understood, and the surgeon goes through a mental checklist and plans each procedure. A “time out”before the operation begins, when every member of the team is briefed, is also valuable in preventing errors.

A hands-on course necessary before undertaking advanced resectoscopic surgery, to become familiar with equipment and techniques, followed by proctoring by a surgeon credentialed for the procedure.


Ignoring contraindications to hysteroscopic surgery increases the risk of complications and is the single greatest factor leading to patient injury and physician liability.

Contraindications include:

  • Unfamiliarity with equipment, instruments, or technique
  • Lack of appropriate equipment or staff familiar with the equipment
  • Acute pelvic inflammatory disease
  • Pregnancy
  • Genital tract malignancies
  • Lack of informed consent
  • Inability to dilate the cervix
  • Inability to distend the uterus to obtain visualization
  • Poor surgical candidates who may not tolerate fluid overload because of renal disease, or radiofrequency current when a cardiac pacemaker is present
  • The patient desires and expects complete amenorrhea3

Mechanical or traumatic complications

These types of complications are among the most common. Other categories include preoperative complications (ie, improper patient selection and lack of informed consent), electrosurgical and gaseous, complications related to distention media, and postoperative complications (ie, infection and late sequelae).

Inability to insert the hysteroscope

This may be caused by a stenotic, nulliparous cervix; menopause; GnRH agonists; previous cone biopsy, laceration, or cryosurgery; or an acutely retroflexed or anteflexed uterus.

Acute flexion problems can be corrected using a long-bladed, open-sided Graves speculum deep in the anterior or posterior fornix. The speculum pushes the fundus to the midposition and facilitates dilation. Once the hysteroscope is inserted, remove the speculum.

Placing a tenaculum on the posterior lip of the cervix of an acutely retroflexed uterus will straighten the cervical canal when traction is applied.

Inserting a laminaria tent the evening before surgery helps dilate the cervix easily and atraumatically.4 However, the laminaria can sometimes create a false passage, leading to perforation.

Cervical ripening agents such as intravaginal or oral misoprostol (200 μg inserted vaginally or 400 μg orally 8 to 12 hours preoperatively) also can facilitate dilation.

Intracervical injection of vasopressin solution (4 IU in 100 cc sodium chloride, injected at the 4 and 8 o’clock positions) can reduce the force needed to dilate the cervix.5 Half-size dilators may help; they also reduce the risk of cervical laceration.

Laceration of the cervix

Although this is a minor complication, substantial bleeding sometimes occurs when the cervix is lacerated by the tenaculum. In these cases, suture the cervix.

Occasionally, a touch of cautery from the rollerball electrode at low power (20 to 30 W) can control the bleeding.

Silver nitrate sticks or ferric subsulfate (Monsel’s) paste are also effective on superficial lacerations.

Bleeding from lower uterus or cervical canal can obscure view

In some cases, bleeding is delayed, necessitating additional surgery. Intravasation of distention fluid also can occur at these lacerations. Coagulation with the electrode may be necessary when bleeding is heavy.

Check for collateral injury when uterine perforation occurs

Perforation is a well-documented risk of operative hysteroscopy and should be discussed with the patient when obtaining informed consent. In the AAGL survey,1 the incidence of perforation was 14 per 1,000. It was even higher during transection of lateral and fundal adhesions: 2 to 3 per 100.6

Although perforation is more common with thermal energy sources, it may occur mechanically when scissors are used to transect a uterine septum, synechiae, or polyps.

When the cervix is stenotic or the uterus is acutely ante- or retroflexed, sounds and dilators can perforate the uterus.

Most perforations—even those involving large dilators—usually do not require treatment, although further assessment may be necessary to rule out bowel injury. Most perforations occur in the fundal region or posterior lower segment.

A false passage can be created when entering the uterus. Occasionally the surgeon may be fooled into thinking the hysteroscope is in the uterine cavity, since the false passage distends (FIGURE 1). If muscle fibers are visible and the tubal ostea are not, assume the passage is false. Slowly remove the hysteroscope and identify the true cavity for confirmation. Discontinue the procedure—even if no perforation is detected—to prevent distention fluid from being absorbed into the circulation through the injury. Adequate distention is not possible at this time.

Delay repeat hysteroscopy for 2 to 3 months.

To avoid creating a false passage, dilate the cervix with slow, steady pressure and stop as soon as the internal os opens; do not attempt to push the dilator to the uterine fundus.

Often the external os opens, but the internal os cannot be dilated the extra 1 to 2 mm necessary to accommodate the 27-French resectoscope. Rather than exert more force and risk perforation or laceration, simply turn on the resectoscope’s inflow with the outflow shut off, and let the fluid pressure dilate the cervix.

Always insert the hysteroscope or resectoscope under direct vision rather than use an obturator. Keep the “dark circle” in the center of the field and slowly advance the hysteroscope toward it until the cavity is reached.

Avulsion of the myometrium sometimes occurs during removal of incompletely resected myomas (FIGURE 2). Keep the myoma grasper away from the fundus when removing myoma segments, and avoid excessive traction on what may be a thin segment of myometrium. Injuries can occur when the grasper perforates the uterus and bowel is inadvertently grasped. Large injuries require laparoscopic repair.

Perforation is more likely in repeat procedures. In a report of 80 repeat endometrial ablations, Townsend and colleagues7 noted 8 perforations that prevented completion of the procedure. In a series of 75 repeat ablations compared with 800 primary ablations by the same surgeon, the rate of serious perioperative complications was significantly higher in the repeat ablation group (9.3% versus 2.0%).8

When perforation occurs during the use of thermal energy, laparoscopy is necessary to assess the organs overlying the site.9 During setup for laparoscopy, bring the hysteroscope near the area of perforation to inspect the bowel beyond the uterus. Since the pelvis fills quickly with distention fluid, the hysteroscope can even be placed through the perforation to yield an excellent view of the undersurfaces of the bowel immediately adjacent to the injured area (FIGURE 3). (Disconnect the electrosurgical cord before doing this!)

Thorough laparoscopic inspection of the bowel in the pelvis often reveals thermal injury, which appears as a whitish patch on the bowel serosa. To repair bowel injuries, bring the injured segment out through a minilaparotomy and excise the damage with a 2- to 3-cm border. A general surgeon should be called in to consult.

When perforation is imminent, the “serosal sign” appears

A 42-year-old woman who underwent endometrial ablation 2 years earlier presents with persistent menorrhagia and a 12-week–size fibroid uterus and expresses a desire for repeat ablation. At the second surgery, the uterine cavity appears scarred, with multiple synechiae.

As the procedure progresses, the uterine serosa becomes visible from within the cavity, appearing as a smooth, bluish structure that can be moved with only slight pressure. As the ablation continues, the uterus perforates, necessitating laparoscopic inspection of the organs overlying the site.

Although the patient recovers, her menorrhagia eventually returns, and she opts for laparoscopically assisted vaginal hysterectomy 1 year later.

Uterine perforation is more likely during repeat procedures

This case illustrates one of the most common risks of operative hysteroscopy: uterine perforation, which occurs more frequenly in repeat procedures.

The case also highlights an important indicator of perforation: the serosal sign, which I first described in 1996.24 When the smooth, bluish structure appears, cease ablation in the region immediately.

If no injury is apparent, discharge the patient but follow her closely, including daily white blood cell counts for 4 to 5 days. Instruct her to take her temperature twice daily and return to the hospital immediately if any signs of bowel perforation develop. Delayed perforation from thermal injury can occur as late as 2 weeks following surgery, and the patient should be apprised of this possibility.

FIGURE 1 Signs of a false passage

Myometrial fibers signal that a false passage has been created. Stop the procedure even if no perforation is detected, to prevent distention fluid from being absorbed into the circulation through the injury.

FIGURE 2 Risk of myomectomy: Myometrial avulsion

Small bowel visible within the uterine cavity after avulsion of uterine wall at the time of myomectomy

FIGURE 3 Use the hysteroscope to assess perforation site

Hysteroscopic view of perforation at the fundus. The small bowel is visible beyond the perforation at left.

Did you miss this content?
Does episiotomy at vacuum delivery increase maternal morbidity?